Haldane Exclusion Statistics and the Boltzmann Equation

نویسندگان

  • R. K. Bhaduri
  • R. S. Bhalerao
  • M. V. N. Murthy
چکیده

We generalize the collision term in the one-dimensional Boltzmann-Nordheim transport equation for quasiparticles that obey the Haldane exclusion statistics. For the equilibrium situation, this leads to the " golden rule " factor for quantum transitions. As an application of this, we calculate the density response function of a one-dimensional electron gas in a periodic potential, assuming that the particle-hole excitations are quasiparticles obeying the new statistics. We also calculate the relaxation time of a nuclear spin in a metal using the modified golden rule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-particles in Fractional Quantum Hall Effect Edge Theories

We propose a quasi-particle formulation of effective edge theories for the fractional quantum Hall effect. For the edge of a Laughlin state with filling fraction ν = 1 m , our fundamental quasi-particles are edge electrons of charge −e and edge quasi-holes of charge + e m . These quasi-particles satisfy exclusion statistics in the sense of Haldane. We exploit algebraic properties of edge electr...

متن کامل

An interpolation between Bose, Fermi and Maxwell-Boltzmann statistics based on Jack Polynomials

An interpolation between the canonical partition functions of Bose, Fermi and Maxwell-Boltzmann statistics is proposed. This interpolation makes use of the properties of Jack polynomials and leads to a physically appealing interpolation between the statistical weights of the three statistics. This, in turn, can be used to define a new exclusion statistics in the spirit of the work of Haldane. P...

متن کامل

Kinetic Approach to Fractional Exclusion Statistics

Abstract: We show that the kinetic approach to statistical mechanics permits an elegant and efficient treatment of fractional exclusion statistics. By using the exclusion-inclusion principle recently proposed [Phys. Rev. E 49, 5103 (1994)] as a generalization of the Pauli exclusion principle, which is based on a proper definition of the transition probability between two states, we derive a var...

متن کامل

Combinatorial interpretation of Haldane-Wu fractional exclusion statistics.

Assuming that the maximal allowed number of identical particles in a state is an integer parameter, q, we derive the statistical weight and analyze the associated equation that defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q=1 and q--> infinity (n(i)/q-->1), respectively. We show that the derived statistical weig...

متن کامل

Haldane exclusion statistics and the charge fractionalisation in chiral bags

It is proposed that the phenomenon of charge fractionalisation of the spatially confined particle in a topological chiral bag may be interpreted as a manifestation of the exclusion statistics proposed by Haldane. The fractional exclusion statistics parameter is just the fractional baryon charge Q of the particle in this case. We also state the necessary conditions for Haldane fractional to occu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008